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FREQUENCY DISPERSION OF SOUND
IN UNDERSEA PROPAGATION

INTRODUCTION

Although the effect of acoustic dispersion in a deep ocean channel is relatively insignificant for
narrowband signals, it can become a factor for signals widely separated in frequency. Due to the com-
plexity of the ocean channel, varied approaches have been taken in the study of dispersion in acoustic
propagation [1-71. For applications involving coherence processing of broadband (or widely separated
narrowband) signals, the results of Ref. 1 appear most useful. Consequently, a more elaborate study
was made of the dispersive effect of widely separated signal sinusoids propagating in a deep ocean chan-
nel. A virtual propagation time is defined, which reflects the range-dependent phase of the acoustic
field. The virtual propagation time (along with the corresponding axial sound speed) fluctuates both
with range and signal frequency. Use is made of the virtual propagation time to calculate the deviation
in the observed frequency ratio of two signals relative to the actual ratio transmitted. Although the
physical model of the ocean channel is somewhat idealized (for computational simplicity), the statistical
results are believed to be representative of those which will be realized in a real ocean environment.

OCEAN-CHANNEL MODEL

The geometry of the ocean channel under consideration is depicted in Fig. 1. The source depth is
150 m, and the receiver depth is 3500 m. The range R is the horizontal distance between the source
and receiver in meters. The vertical sound-speed profile is typical of that for the NE Pacific ocean in
the late summer, and it is assumed constant over the range under consideration. The ocean bottom (at
a depth of 6000 m) is considered perfectly absorbing, and the surface is assumed to be a perfect
pressure-release boundary.

1480 1 1520

z- SOURCE DEPTH (150m)

E

a-

6000
Fig.

- RECEIVER DEPTH (3500 m)

- Geometry and depth-dependent sound-speed profile used as an ocean-channel model

Manuscript submitted March 15, 1982.
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The acoustic field as a function of range R and water depth D (co t suppressed) is calculated as

(dR) = A (R) exp [-i+k(R)], (1)

where

A (R) = i2r/RD2 I Pm exp (ikmR) | (la)

and

A Pm sin (kmR)

+ (R )=arctan m (lb)I Pm cos(kmR)
m

The mode amplitudes Pm and wavenumbers km (m = 1, 2, ... ) are computed using the NRL normal-
mode model [8].

The above channel model is the same as that employed in Ref. 1 and, although oversimplified,
should give results which are reasonably representative of what can be expected in a real ocean environ-
ment.

VIRTUAL PROPAGATION TIME

In an ideal medium, the acoustic field may be expressed as A (R) exp [iw(t- tR)], where tR is
the propagation time between the source and the receiver. The ocean channel, however, is more com-
plicated and does not lend itself to a strict interpretation of propagation time. This is a consequence of
multipath signal arrivals, which give rise to a composite acoustic field. On the other hand, the relative
phase of a single frequency may be tracked along the range axis and used to determine the virtual
phase-propagation speed along this axis. This can be employed to compute the virtual (or effective)
propagation time along the axis if c tR = 27rftR is related to the phase function / (R).

Consider now the use of Eq. (lb) to compute the relative phase of the acoustic field for a
sequence of range values R, = Ro + Kn (n = 0, 1, 2, .. , N), where K is sufficiently small to preclude
phase ambiguity. To track the phase, define

(R,) - (R, -1) for - < 4 (R,)- (Rn -- -r,
On = ¢ (Rn)- (Rn 1) + 21T for f(R2)- (R, (2)

(Rn) - 0(Rn -1)-2r for Ir < t (R)-+ (R.- ).-

The virtual propagation time between range Ro and range Rn will be defined as

T(R 0;f) = 1 A~ (3)2Irf j

and the average axial phase-propagation speed over the range increment Rj to R, is

c-j(f Y (n -j) K (4)
T(Rn;f)- T(Rj;f)

From the above definitions, it is evident that the virtual propagation time is not necessarily a
monotonic function of R, but it can either increase or decrease with n, as well as vary with the signal
frequency f. This is intuitively acceptable, since the received signal at any range may be viewed as the
superposition of signals arriving over several eigenray paths with differing propagation times [9]. How-
ever, the general trend of the virtual propagation time will be to increase with range at a rate inversely
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proportional to the average axial propagation speed. Consequently, to study the fluctuations of the vir-
tual propagation time over the range Ro to RN, the function A T(R,;f) is defined as

AT(RJ;f) = T(RJ;f) - Rn1/oN(f) (5)

FLUCTUATIONS IN PROPAGATION TIME

For the model ocean channel described earlier, the fluctuations in the virtual propagation time
have been computed from Eq. (5) over the range of 50 to 500 nmi for signal frequencies of
10,15,20,30,40, and 80 Hz. The results are illustrated in Figs. 2 through 10. The axial propagation
speeds for each 50-nmi increment, as well as over the entire 450-nmi range, are listed in Table 1.

Table 1 - Average Axial Phase-Propagation Speed Computed over 50-nmi
Range Increments for Sinusoidal Signals at Six Specified Frequencies

Range Phase-Propagation Speed (m/s)
(nmi) 10 Hz 15 Hz 20 Hz 30 Hz 40 Hz 80 Hz
50-100 1522 1522 1524 1521 1520 1521

100-150 1521 1525 1524 1521 1520 1521
150-200 1519 1525 1523 1523 1521 1522
200-250 1519 1525 1525 1523 1520 1523
250-300 1520 1524 1521 1523 1521 1521
300-350 1522 1522 1525 1523 1522 1523
350-400 1519 1526 1525 1523 1521 1522
400-450 1524 1525 1523 1520 1520 1522
450-500 1522 1524 1526 1521 1521 1522

50-500 1521 1524 1524 1522 1521 1522

Each of the nine figures is for a given 50-nmi range increment, and the results of the six signal
frequencies are displayed on each figure. Above each graph of A T(RJ;f), the normalized (cylindrical
spreading loss suppressed) acoustic-field amplitude A (R) is displayed to show the relationship between
the amplitude and the propagation-time fluctuations. (Signal amplitude is plotted on a linear, rather
than a dB scale.) It will be noted that the more rapid propagation-time variations occur at ranges at
which the signal amplitude dips sharply toward zero. Further, the magnitude of these steep time shifts
decreases with frequency, as can be expected, since a careful measurement of the time shifts shows that
they are approximately equal to one-half the period of the signal frequency. The explanation of this
phenomenon is best understood in terms of discrete eigenray signals [9,101. The eigenray signals,
comprising the resultant received signal, may be represented as signal vectors in a complex phase-plane.
The resultant signal vector is then the vector sum of all the signal vectors in the plane. At the point
along the R axis where the acoustic field is near zero, the vector sum of the eigenray signals approaches
the origin of the phase plane. In either direction from this range, the magnitude and phase of the
resultant vector changes rapidly. However, the total phase shift in traversing through the null point will
be limited to about + Ir radians. When the resultant signal vector transitions clockwise through the
null (as the range increases), the resultant time shift will be positive; if counterclockwise, the time shift
will be negative (representing a decrease in the virtual propagation time). (Examples of the eigenray
signal-vector approach to propagation analysis are given in Ref. 10.) A study of Figs. 2 through 10
reveals that the magnitude of the temporal fluctuations over the displayed range does not exceed + 0.2
s, and it decreases with frequency for reasons given earlier.

(Text continues on page 13)
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Fig. 2 - Fluctuations in virtual propagation time over the range 50 to 100 nmi for the six identified frequencies. The
time fluctuations may be correlated with the normalized acoustic-field amplitude displayed over each time graph. For

each signal frequency, the time scale in signal wave periods is shown at the right.
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SPECTRAL DIFFERENCE IN PROPAGATION TIME

To study the difference in virtual propagation times between signals of different frequency, the
following relation will be defined. Let

T (Rn;f5f 2) = T(Rn;f2) - T(Rn;fl)

(6)
2Tf2 S (A 02j - qA1,jJ,

where q is the signal-frequency ratio fJfi, and the subscripts on the Aos represent the computed phase
differences for the two signals as given in Eq. (2). This spectral difference in propagation time has
been computed over the range 50 to 500 nmi for 15 combinations of the frequencies considered earlier.
The results are illustrated in Figs. 11 through 25.

Each figure displays the difference in propagation time over the range of 50 to 500 nmi for a given

frequency pair. Over the range of 50 to 500 nmi, and for all frequency pairs, the difference in virtual

propagation time is within + 1.5 s. The peak-to-peak fluctuations in propagation time, for the indivi-

dual pairs over this range, vary from about 1.4 s to less than 0.2 s. The mean peak-to-peak fluctuation
is about 0.8 s over the range and for the frequency pairs tested.

From a study of the graphs, one may interpret the magnitude of the propagation-time fluctuations
in terms of the phase fluctuation. On each figure, the equivalent wave periods (referenced to the

higher of the two signal frequencies) of the 0.4-s time scale are marked on the right of the center scale.
Thus, the phase fluctuation for a given time fluctuation will be proportional to the higher of the two

signal frequencies, as demonstrated in Eq. (6).

(Text continues on page 29)
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Hz. The time scale, in wave periods of the upper frequency, is shown at the right of the center graph.
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Fig. 16 - Difference in virtual propagation time, over the range 50 to 500 nmi, between sinusoidal signals of 10 and 40
Hz. The time scale, in wave periods of the upper frequency, is shown at the right of the center graph.
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Hz. The time scale, in wave periods of the upper frequency, is shown at the right of the center graph.
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Fig. 19 - Difference in virtual propagation time, over the range 50 to 500 nmi, between sinusoidal signals of 15 and 40
Hz. The time scale, in wave periods of the upper frequency, is shown at the right of the center graph.
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Fig. 22 - Difference in virtual propagation time, over the range 50 to 500 nmi, between sinusoidal signals of 20 and 80
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Fig. 24 - Difference in virtual propagation time, over the range SO to 500 nmi, between sinusoidal signals of 30 and 80
Hz. The time scale, in wave periods of the upper frequency, is shown at the right of the center graph.
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MEASURE OF SPECTRAL DISPERSION

In a dispersionless medium the value of r (R,;f 1,f 2 ) given by Eq. (6) would be zero over all Ri.
The fact that this time difference varies with range is evidence of dispersion in the deep ocean channel.
A useful measure of the frequency dispersion can be obtained if we consider a virtual frequency ratio
q'(Rn;f 1,f 2 ) which, when used in Eq. (6) in place of the actual frequency ratio q, will make r (Rn;f 1,f2 )

independent of range. The measure of the spectral dispersion will therefore be defined as the
difference between the virtual and actual frequency ratios, or

E(Rn;fJf 2 ) = q'(R.;f 1 f2) - q. (7)

To determine the error in frequency ratio, a dynamic variable is required to create a change in the
variables with time. Consequently, the range variable R is parameterized to vary with time. In this cir-
cumstance, the observed frequencies fj and f; at the point R will be

f (R;f2) = f2 - 2 -(R;f 2)= f2[1 - T(R;f 2)] (8a)

and

fA (R;fl) = fl- y i(R;fi) = fl1 - t(R;fl)], (8b)
where the dot over the variable implies the derivative with respect to time. The virtual frequency ratio
is then the ratio of the observed (virtual) signal frequencies, or

q'(R;f1,f2) = q- T(R;f2) q[_ - (R;fiJ2)] (9)
1 - i'(R;f 1) q[- (f 1 f)(9

and

e(R;f1 ,f2) q (R;f l-f2) qh d r (R;f1,f 2). (10)

Thus, the measure of frequency dispersion is proportional to the product of the true frequency ratio q,
the source-sensor range-rate R (in meters per second), and the slope of the function r(R;f 1Jf2 ). In
terms of the discrete measures of the variables,

(R__;flJ2) = K15 [T(Rn;f1,f2) - 7(Rnl;flf 2)J, (11)

where R is the range rate expressed in knots. The above function has been computed over the range of
50 to 500 nmi for the frequency combinations considered earlier. The results are illustrated in Figs. 26
through 40.

A study of the illustrations reveals that, except for the occasional sharp spikes along the range
axis, the frequency dispersion is rather moderate. As may be conjectured, the sharp spikes occur at
points where the virtual propagation time changes rapidly with range for either frequency. It will be
noticed, too, that the peaks of the spikes are smaller when both signal frequencies are large. It is
important to recall that the spikes are induced at ranges where the amplitude of either signal is excep-
tionally low (see Figs. 2 through 10). Thus, an experimental observation of their existence will be
difficult to achieve in a noisy signal background. It may be concluded that they play a rather
insignificant role in practical applications of underwater acoustics.

(Text continues on page 45)
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Fig. 26 - Dispersion measure e x 104/ qR, over the range 50 to 500 nmi, between sinusoidal signals of 10 and 15
Hz. The measure of dispersion is the difference between the observed (or virtual) frequency ratio q'and the true
frequency ratio q, R is the range rate in knots.
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frequency ratio q, A is the range rate in knots.
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Fig. 33 - Dispersion measure e X 104/ qR, over the range 50 to 500 nmi, between sinusoidal signals of 20 and 30
Hz. The measure of dispersion is the difference between the observed (or virtual) frequency ratio q' and the true

frequency ratio q, R is the range rate in knots.

37

4



GERLACH, FLOWERS, JOHNSON, ANDERSON, AND KUNZ

50 60 70 so 90

0-0.5-

100 110 120 130 140
n c-.

0 

150 160 170 180 190 200

200 210 220 230 240 250

0

250 260 270 280 290 Soo

O'

-0.5
300 310 320 330 340 350

0.53
OV {

0-

.05

350 360 370 380 390 1100

0.

450 460 470 480 490 Soo
RANGE (n ml )

Fig. 34 - Dispersion measure e x 104/ qR, over the range 50 to 500 nmi, between sinusoidal signals of 15 and 40
Hz. The measure of dispersion is the difference between the observed (or virtual) frequency ratio q'and the true
frequency ratio q, R is the range rate in knots.
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Fig. 35 - Dispersion measure e X 104/ qR, over the range 50 to 500 nmi, between sinusoidal signals of 15 and 80

Hz. The measure of dispersion is the difference between the observed (or virtual) frequency ratio q' and the true
frequency ratio q, R is the range rate in knots.
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Fig. 36 - Dispersion measure E x 104/ qR, over the range 50 to 500 nmi, between sinusoidal signals of 20 and 40
Hz. The measure of dispersion is the difference between the observed (or virtual) frequency ratio q'and the true
frequency ratio q, R is the range rate in knots.
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frequency ratio q, A is the range rate in knots.
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DISTRIBUTION OF SPECTRAL DISPERSION MEASURE

An important measure to be obtained from the data on frequency dispersion is the distribution of
e (R; fl, f2) for the significant parameters under consideration. Histograms depicting the probability
density of e X 106/qR have been computed, over the range of 50 to 500 nmi, for each of the frequency
pairs under consideration. They are displayed in Fig. 41. The histograms (from left to right and top to
bottom) are ordered to display increasing values of the frequency ratio q. Since there appears to be no
correlation between the histograms and the ratio q, it may be concluded that the spread of the distribu-
tion of e is directly proportional to the frequency ratio q.

To study the correlation of the histograms with both range and signal frequency, the standard
deviation of E x 106/qA was computed, in 50-nmi range increments, for each signal frequency pair.
The results are listed in Table 2. There appears to be a slight correlation of dispersion with range (as
might be expected intuitively), and a somewhat stronger correlation with the frequencies of the signal
pairs. In this latter case, however, the spread of the distribution is largely influenced by the peaks of
the spikes of e/qR (see Figs. 26 through 40). If this influence is removed (by ignoring the spikes), the
correlation of the distribution with signal frequency would be rather negligible.

Table 2 - Standard Deviation of e x 106 /qR Computed over
50-nmi Range Increments for 15 Signal-Frequency Pairs

Standard Deviation
Freq. 50 nmi 100 nmi 150 nmi 200 nmi 250 nmi 300 nmi 350 nmi 400 nmi 450 nmi 50 nmi
Pair to to to to to to to to to to
(Hz) 100 nmi 150 nmi 200 nmi 250 nmi 300 nmi 350 nmi 400 nmi 450 nmi 500 nmi 500 nmi

10-15 3.92 4.26 5.14 5.58 4.57 6.01 4.21 6.55 6.85 5.35
10-20 3.52 3.90 4.26 5.30 4.27 5.18 5.04 6.80 6.77 5.13
15-20 3.88 4.26 4.59 5.58 4.72 5.72 5.36 5.36 4.41 4.92
10-30 3.13 3.48 4.34 4.84 3.87 5.06 3.41 6.10 6.69 4.72
15-30 3.26 3.89 4.20 5.22 4.81 5.70 4.64 5.38 4.31 4.66

10-40 3.03 3.01 4.07 4.74 3.13 4.36 3.21 5.20 6.37 4.28
10-80 2.91 3.42 3.99 4.68 3.09 4.44 3.20 5.55 5.96 4.28
20-30 3.01 3.20 4.06 4.51 4.15 4.74 4.87 4.80 4.36 4.25
15-40 3.28 3.62 4.29 4.98 4.31 5.04 3.66 4.83 3.65 4.24
15-80 3.80 3.81 4.28 5.09 4.29 5.00 3.53 4.60 4.48 4.35

20-40 2.77 3.06 3.91 4.03 3.33 4.54 4.76 4.24 3.91 3.90
20-80 2.68 3.06 4.00 4.43 3.30 4.51 4.57 4.12 3.99 3.91
30-40 2.20 2.48 3.27 3.35 3.90 3.76 3.48 3.95 3.56 3.38
30-80 2.53 2.71 3.27 3.29 3.49 3.92 3.42 3.71 3.53 3.35
40-80 2.28 2.30 2.80 2.98 2.73 3.13 2.73 3.05 3.39 2.84

ALL 3.12 3.41 4.07 4.64 3.91 4.80 4.08 5.05 4.98 4.29
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A histogram comprising all of the data is illustrated in Fig. 42, and the resulting cumulative prob-
ability diagram is illustrated in Fig. 43. The latter figure displays the probability that e x 106 /qR falls
within plus or minus the given abscissa value. Thus, it is 90% probable that the virtual (or observed)
frequency ratio q' will not deviate more than 5 qR X 10-6 from the true frequency ratio q.
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Fig. 42 - Histogram depicting the probability-density of the spectral dispersion measure e over the
range 50 to 500 nmi. The histogram is the average of the histograms displayed in Fig. 41 and is as-
sumed independent of the signal frequencies used,
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Fig. 43 - Cumulative probability of the dispersion measure E about zero computed from
the histogram displayed in Fig. 42
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Another way of looking at the results is that e/q is a measure of the time rate-of-change in the
difference in virtual propagation time between two signals of different frequency [Eq. (10)]. As a
consequence, when the abscissa of Fig. 43 is multiplied by R (in knots), one obtains the probability
that the time rate-of-change in propagation time between the two signals will be equal to or less than
the abscissa value in microseconds per second. Thus, it is 90% probable that the measure Ie/q I is not
greater than 5R /is/s.

CONCLUSIONS

Acoustic dispersion in an ocean channel is manifested as a variation in the virtual phase-
propagation speed with frequency along the radius of propagation. As a consequence, the virtual propa-
gation time for sinusoidal signals varies both with range and with the frequency of -the transmitted sig-
nal. When two such signals are transmitted, the observed (or virtual) frequency ratio, moving along
the radius of propagation, will fluctuate about the true frequency ratio of the transmitted signals. The
magnitude of these fluctuations is directly proportional to the transmitted frequency ratio. A measure
of the spectral dispersion E is defined as the difference between the virtual and the true frequency ratio
q. The ratio e/q, for a 1-knot range rate (reflecting the time rate-of-change of the difference in propa-
gation time between two sinusoidal signals), is typically less than 5 ,As/s. The dependence of this ratio
on range (over the range of 50 to 500 nmi) and on the frequency of the signals (between 10 and 80
Hz) is found to be relatively insignificant (see Table 2 and Fig. 41). It can be concluded that spectral
acoustic dispersion in a deep ocean channel is microscopic, but it can be significant for applications
involving the phase correlation of broadband (or spectrally separated) signals over long time intervals.
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